
CS267  L6 Data Parallel Programming.1 Lucas Sp 2000

CS 267 Applications of Parallel Computers

Lecture 6: 
Distributed Memory (continued)

Data Parallel Architectures and Programming 

Bob Lucas

Based on previous notes by James
Demmel and David Culler

www.nersc.gov/~dhbailey/cs267
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Recap of Last Lecture

° Distributed memory machines
• Each processor has independent memory

• Connected by network

- topology, other properties

° Cost =
 #messages * αααα   +   #words_sent * ββββ   +   #flops * f  +  delay

° Distributed memory programming
• MPI

• Send/Receive

• Collective Communication

• Sharks and Fish under gravity as example
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Outline

° Distributed Memory Programming (continued)
• Review Gravity Algorithms

• Look at Sharks and Fish code

° Data Parallel Programming
• Evolution of Machines

• Fortran 90 and Matlab

• HPF (High Performance Fortran)
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Example: Sharks and Fish

° N fish on P procs, N/P fish per processor
• At each time step, compute forces on fish and move them

° Need to compute gravitational interaction
• In usual N^2 algorithm, every fish depends on every other fish

        force on j =   Σ Σ Σ Σ       (force on j due to k)

• every fish needs to “visit” every processor, even if it “lives” on
one

° What is the cost?

k=1:N
k != j
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2 Algorithms for Gravity: What are their costs?

Algorithm 1
     
        Copy local Fish array of length N/P to Tmp array
        for j = 1 to N
              for k = 1 to N/P,   Compute force from Tmp(k) on Fish(k)
              “Rotate” Tmp by 1  
                     for k=2 to N/P, Tmp(k) <= Tmp(k-1)  
                     recv(my_proc - 1,Tmp(1))
                     send(my_proc+1,Tmp(N/P)

Algorithm 2

        Copy local Fish array of length N/P to Tmp array
        for j = 1 to P
              for k=1 to N/P, for m=1 to N/P, Compute force from Tmp(k) on Fish(m)
              “Rotate” Tmp by N/P 
                    recv(my_proc - 1,Tmp(1:N/P))
                    send(my_proc+1,Tmp(1:N/P))

What could go wrong?  (be careful of overwriting Tmp)
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More Algorithms for Gravity

° Algorithm 3 (in sharks and fish code)
• All processors send their Fish to Proc 0

• Proc 0 broadcasts all Fish to all processors

° Tree-algorithms
• Barnes-Hut, Greengard-Rokhlin, Anderson

• O(N log N) instead of O(N^2)

• Parallelizable with cleverness

• “Just” an approximation, but as accurate as you like (often only a
few digits are needed, so why pay for more)

• Same idea works for other problems where effects of distant
objects becomes “smooth” or “compressible”

- electrostatics, vorticity, …

- radiosity in graphics

- anything satisfying Poisson equation or something like it

• May talk about it in detail later in course
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Examine Sharks and Fish Code

° www.cs.berkeley.edu/~demmel/cs267_Spr99/Lectures/fish.c
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Data Parallel Machines
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Data Parallel Architectures

° Programming model
• operations are performed on each element of a large (regular)

data structure in a single step

• arithmetic, global data transfer

° A processor is logically associated with each data
element

• A=B+C means   for all j, A(j) = B(j) + C(j)   in parallel

° General communication
• A(j) = B(k) may communicate

° Global synchronization
• implicit barrier between statements

° SIMD: Single Instruction, Multiple Data

Control
Processor

P-M P-M P-M° ° °

P-M P-M P-M° ° °

P-M P-M P-M° ° °
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Vector Machines

° The Cray-1 and its successors  (www.sgi.com/t90)
• Load/store into 64-word Vector Registers, with strides:          vr(j) = Mem(base + j*s)

• Instructions operate on entire vector registers:           for j=1:N  vr1(j) = vr2(j) + vr3(j)

vector
registers

pipelined function units

highly interleaved 
semiconductor (SRAM) 
memory

° No cache,  but very fast (expensive) memory
° Scatter  [Mem(Pnt(j)) = vr(j)]    and    Gather  [vr(j) = Mem(Pnt(j)]
° Flag Registers    [vf(j)  =  (vr3(j) != 0)]
° Masked operations    [vr1(j) = vr2(j)/vr3(j)  where vf(j)==1]
° Fast scalar unit too
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Use of SIMD Model on Vector Machines

VP0 VP1 VP63

vr0

vr1

vr31

vf0
vf1

vf31

64 bits

1 bit

General
Purpose

Registers
(32)

Flag
Registers

(32)

Virtual Processors (64)

vcr0

vcr1

vcr15

Control
Registers

32 bits
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Evolution of Vector Processing

° Cray (now SGI), Convex, NEC, Fujitsu, Hitachi,…

° Pro: Very fast memory makes it easy to program
• Don’t worry about cost of loads/stores, where data is (but memory banks)

° Pro: Compilers automatically convert loops to use vector instructions
• for j=1 to n, A(j) = x*B(j)+C(k,j) becomes sequence of vector instructions

that breaks operation into groups of 64

° Pro: Easy to compile languages like Fortran90

° Con: Much more expensive than bunch of micros on network

° Relatively few customers, but powerful ones

° New application: multimedia
• New microprocessors have fixed point vector instructions (MMX, VIS)

• VIS (Sun’s Visual Instruction Set) (www.sun.com/sparc/vis)

- 8, 16 and 32 bit integer ops

- Short vectors only (2 or 4)

- Good for operating on arrays of pixels, video
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Data parallel programming
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Evolution of Data Parallel Programming

° Early machines had single control unit for multiple
arithmetic units, so data parallel programming was
necessary

° Also a natural fit to vector machines

° Can be compiled to run on any parallel machine, on
top of shared memory or MPI

° Fortran 77

         -> Fortran 90

                 -> HPF (High Performance Fortran)
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Fortran90  Execution Model  (also Matlab)

• Sequential composition of parallel (or scalar) statements
• Parallel operations on arrays

• Arrays have rank (# dimensions), shape (extents),
   type (elements)

– HPF adds layout
• Communication implicit in array operations
• Hardware configuration independent

Main

Subr(…)
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Example: gravitational fish
      integer, parameter :: nfish = 10000

      complex fishp(nfish), fishv(nfish), force(nfish), accel(nfish)

      real    fishm(nfish)

. . .

      do while (t < tfinal)

         t = t + dt

         fishp   = fishp + dt*fishv

         call compute_current(force,fishp)

         accel   = force/fishm

         fishv   = fishv + dt*accel

         ...

      enddo

. . .

      subroutine compute_current(force,fishp)

      complex force(:),fishp(:)

      force = (3,0)*(fishp*(0,1))/(max(abs(fishp),0.01)) - fishp

      end

*

+

parallel assignment

pointwise parallel operator
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Array Operations

Parallel Assignment

A = 0 ! scalar extension

L = .TRUE.

B = [1,2,3,4] ! array constructor

X = [1:n] ! real sequence [1.0, 2.0, . . .,n]

I = [0:100:4] ! integer sequence [0,4,8,...,100]

C = [ 50[1], 50[2,3] ] ! 150 elements, first 1s then repeated 2,3

D = C ! array copy

Binary array operators operate pointwise on conformable arrays

• have the same size and shape
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Array Sections

Portion of an array defined by a triplet in each dimension
• may appear wherever an array is used

A(3) ! third element

A(1:5) ! first five elements

A(1:5:1) ! same

A(:5) ! same

A(1:10:2) ! odd elements in order

A(10:2:-2) ! even in reverse order

A(10:2:2) ! same

B(1:2,3:4) ! 2x2 block

B(1, :) ! first row

B(:, j) ! jth column
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Reduction Operators

Reduce an array to a scalar under an associative binary operation

• sum, product

• minval, maxval

• count (number of .TRUE. elements of logical array)

• any, all

simplest form of communication

      do while (t < tfinal)

         t = t + dt

         fishp   = fishp + dt*fishv

         call compute_current(force,fishp)

         accel   = force/fishm

         fishv   = fishv + dt*accel

         fishspeed = abs(fishv)

         mnsqvel = sqrt(sum(fishspeed*fishspeed)/nfish)

         dt      = .1*maxval(fishspeed) / maxval(abs(accel))

      enddo

implicit broadcast
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Conditional Operation

      force = (3,0)*(fishp*(0,1))/(max(abs(fishp),0.01)) - fishp

could use

      dist = 0.01

      where (abs(fishp) > dist) dist = abs(fishp)

or

      far = abs(fishp) > 0.01

      where far dist = abs(fishp)

or

      where (abs(fishp) .ge. 0.01)

          dist = abs(fishp)

      elsewhere

      dist = 0.01

      end where

No nested wheres.  Only assignment in body of the where.
The boolean expression is really a mask array.
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Forall in HPF (Extends F90)

FORALL ( triplet, triplet,…,mask ) assignment

      forall ( i = 1:n) A(i) = 0 ! same as A = 0

     forall ( i = 1:n ) X(i) = i ! same as X = [ 1:n ]

     forall (i=1:nfish) fishp(i) = (i*2.0/nfish)-1.0

     forall (i=1:n, j = 1:m) H(i,j) = i+j

     forall (i=1:n, j = 1:m) C(i+j*2) = j

     forall (i = 1:n) D(Index(i)) = C(i,i)    ! Maybe

     forall (i=1:n, j = 1:n, k = 1:n)

    *     C(i,j) = C(i,j) + A(i,k) * B(k,j)   ! NO

Evaluate entire RHS for all index values (in any order)

Perform all assignments (in any order)

No more than one value for each element on the left (may be checked)
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Conditional (masked) intrinsics

 Most intrinsics take an optional mask argument

    funny_prod = product( A, A .ne. 0)

    bigem = maxval(A, mask = inside )

Use of masks in the FORALL assignment (HPF)

    forall ( i=1:n, j=1:m, A(i,j) .ne. 0.0 ) B(i,j) = 1.0 / A(i,j)

    forall ( i=1:n, inside) A(i) = i/n
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Subroutines

• Arrays can be passed as arguments.

• Shapes must match.

• Limited dynamic allocation

• Arrays passed by reference, sections by value (i.e., a copy is made)

•HPF: either remap or inherit

• Can extract array information using inquiry functions
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Implicit Communication

Operations on conformable array sections may require data movement

i.e., communication

      A(1:10, : ) = B(1:10, : ) +  B(11:20, : )

Example: Parallel finite differences

      A’[i] = (A[i+1] - A[i])*dt   becomes

      A(1:n-1) = (A(2:n) - A(1:n-1)) * dt

Example: smear pixels

      show(:,1:m-1) = show(:,1:m-1) + show(:,2:m)

      show(1:m-1,:) = show(1:m-1,:) + show(2:m,:)
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Global Communication

    c(:, 1:5:2) = c(:, 2:6:2)     ! shift noncontiguous sections

    D = D(10:1:-1)                  ! permutation (reverse)

    A = [1,0,2,0,0,0,4]

    I = [1,3,7]

    B = A(Ind)                         ! Ind = [1,2,4]     “gather”

    C(Ind) = B                         ! C = A   “scatter” (no duplicates on left)

    D = A([1,1,3,3])                 ! replication
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Specialized Communication

CSHIFT( array, dim, shift)                           ! cyclic shift in one dimension

EOSHIFT( array, dim, shift [, boundary])   ! end off shift

TRANSPOSE( matrix )                                 ! matrix transpose

SPREAD(array, dim, ncopies)
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Example: nbody calculation

   subroutine compute_gravity(force,fishp,fishm,nfish)

      complex force(:),fishp(:),fishm(:)

      complex fishmp(nfish),  fishpp(DSHAPE(fishp)), dif(DSIZE(force))

      integer k

      force  = (0.,0.)

      fishpp = fishp

      fishmp = fishm

      do k=1, nfish-1

         fishpp = cshift(fishpp, DIM=1, SHIFT=-1)

         fishmp = cshift(fishmp, DIM=1, SHIFT=-1)

         dif = fishpp - fishp

         force = force + (fishmp * fishm * dif / (abs(dif)*abs(dif)))

      enddo

      end
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HPF Data Distribution (layout) directives

° Can ALIGN arrays with other arrays for affinity
• elements that are operated on together should be stored together

° Can ALIGN with TEMPLATE for abstract index space

° Can DISTRIBUTE templates over processor grids

° Compiler maps processor grids to physical procs.

Arrays Arrays or
Templates

ALIGN

Abstract
Processors

DISTRIBUTE

physical
computer



CS267  L6 Data Parallel Programming.29 Lucas Sp 2000

Alignment

A:

B:

ALIGN A(I) WITH B(I)

A:

B:

ALIGN A(I) WITH B(I+2)

C:

B:

ALIGN C(I) WITH B(2*I)

ALIGN D(i,j) WITH E(j,i)

ALIGN D(:,*) with A(:) ALIGN A(:) with D(*,:)

- collapse dimension - replication

?



CS267  L6 Data Parallel Programming.30 Lucas Sp 2000

Layouts of  Templates on Processor Grids

° Laying out T(8,8) on 4 processors

(Block, *) (*, Block) (Block, Block)

(Cyclic, *) (Cyclic, Block)(Cyclic, Cyclic)
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Example Syntax

Declaring Processor Grids
!HPF$            PROCESSORS P(32)

               !HPF$            PROCESSORS Q(4,8)

Distributing Arrays onto Processor Grids
!HPF$            PROCESSORS p(32)

                                          real D(1024), E(1024)
!HPF$            DISTRIBUTE D(BLOCK)

               !HPF$            DISTRIBUTE E(BLOCK) ONTO p
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Blocking Gravity in HPF
      subroutine compute_gravity(force,fishp,fishm,nblocks)

      complex force(:,B),fishp(:,B),fishm(:,B)

      complex fishmp(nblocks,B), fishpp(nblocks,B),dif(nblocks,B)

!HPF$ Distribute force(block,*), . . .

      force  = (0.,0.)

      fishpp = fishp

      fishmp = fishm

      do k=1, nblocks-1

         fishpp  = cshift(fishpp,  DIM=1, SHIFT=-1)

         fishmp = cshift(fishmp, DIM=1, SHIFT=-1)

         do j = 1, B

             forall (i = 1:nblocks) dif(i,:) = fishpp(i,j) - fishp(i,:)

             forall (i = 1:nblocks) force(i,:) = force(i,:) +

     *          (fishmp(i,j) * fishm(i,:) * dif(i,:) / (abs(dif(i,:))*abs(dif(i,:))))

         end do

      enddo
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HPF “Independent” Directive

° Assert that the iterations of a do-loop can be
performed independently without changing the
result computed.

• Tells compiler “trust me, you can run this in parallel”

• In any order or concurrently

!HPF$   INDEPENDENT

                do i=1,n

                  A(Index(i)) = B(i)

                enddo
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Parallel Prefix (Scan) Operations

     forall (i=1:5) B(i) = SUM( A(1:i) )           ! forward running sum

     forall (i=1:n) B(i) = SUM( A(n-i+1:n) )   ! reverse direction

     dimension fact(n)

     fact = [1:n]

     forall (i=1:n) fact(i) = product( fact(1:i) )

or

     CMF_SCAN_op (dest,source,segment,axis,direction,inclusion,mode,mask)

op = [add,max,min,copy,ior,iand,ieor]
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Other Data Parallel Languages

• *LISP,  C*, DPCE

• NESL, FP

• PC++

• APL, MATLAB, . . .


